首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11910篇
  免费   1627篇
  国内免费   2004篇
化学   9936篇
晶体学   125篇
力学   1976篇
综合类   111篇
数学   606篇
物理学   2787篇
  2024年   25篇
  2023年   164篇
  2022年   359篇
  2021年   501篇
  2020年   761篇
  2019年   592篇
  2018年   413篇
  2017年   441篇
  2016年   520篇
  2015年   507篇
  2014年   610篇
  2013年   919篇
  2012年   768篇
  2011年   673篇
  2010年   478篇
  2009年   615篇
  2008年   650篇
  2007年   686篇
  2006年   683篇
  2005年   611篇
  2004年   590篇
  2003年   520篇
  2002年   398篇
  2001年   328篇
  2000年   319篇
  1999年   246篇
  1998年   242篇
  1997年   261篇
  1996年   226篇
  1995年   241篇
  1994年   202篇
  1993年   176篇
  1992年   172篇
  1991年   122篇
  1990年   110篇
  1989年   63篇
  1988年   57篇
  1987年   60篇
  1986年   35篇
  1985年   35篇
  1984年   24篇
  1983年   15篇
  1982年   24篇
  1981年   18篇
  1980年   20篇
  1979年   20篇
  1978年   11篇
  1977年   6篇
  1976年   8篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 26 毫秒
81.
Heavy metal ions are harmful to aquatic life and humans owing to their high toxicity and non‐biodegradability, so their removal from wastewater is an important task. Therefore, this work focuses on designing suitable, simple and economical nanosensors to detect and remove these metal ions with high selectivity and sensitivity. Based on this idea, different types of mesoporous materials such as hexagonal SBA‐15, cubic SBA‐16 and spherical MCM‐41, their chloro‐functionalized derivatives, as well as 4‐(4‐nitro‐phenylazo)‐naphthalen‐1‐ol (NPAN) azo dye have been synthesized, with the aim of designing some optical nanosensors for metal ions sensing applications. The mentioned azo dye has been anchored into the chloro‐functionalized mesoporous materials. The designed nanosensors were characterized using scanning and transmission electron microscopy as well as Fourier transform infrared and UV–visible spectral analysis, nitrogen adsorption–desorption isotherms, low‐angle X‐ray diffraction and thermogravimetric analyses. Their optical sensing to various toxic metal ions such as Cd (II), Hg (II), Mn (II), Fe (II), Zn (II) and Pb (II) at different values of pH (1.1, 4.9, 7 and 12) was investigated. The optimization of experimental conditions, including the effect of pH and metal ion concentration, was examined. The experimental results showed that the solution pH had a major impact on metal ion detection. The optical nanosensors respond well to the tested metal ions, as reflected by the enhancement in both absorption and emission spectra upon adding different concentrations of the metal salts and were fully reversible on adding ethylene diamine tetra acetic acid or citric acid to the formed complexes. High values of the binding constants for the designed nanosensors were observed at pHs 7 and 12, confirming the strong chelation of different metals to the nanosensor at these pHs. Also, high binding constants and sensitivity were observed for NPAN‐MCM‐41 as a nanosensor to detect the different metal ions. From the obtained results, we succeeded in transforming the harmful azo dye into an environmentally friendly form via designing of the optical nanosensors used to detect toxic metal ions in wastewater with high sensitivity.  相似文献   
82.
Three new metal complexes [Cu(L)2] (1), [Co(L)2] (2) and [Zn(L)2] (3) have been prepared by the reaction of hydrated salts of metal (II) acetate with new Schiff base ligand HL, [2‐((4‐(dimethylamino)phenylimino)methyl)‐4,6‐di‐t‐butylphenol] and characterized by different physico‐chemical analyses such as elemental analysis, single XRD, 1H NMR, FTIR and UV–Vis spectroscopic techniques. Their biomolecular docking, antimicrobial and cytotoxicity studies have also been demonstrated. The proposed structure of Schiff base ligand HL and complex 2 are confirmed by Single crystal X‐ray crystallography study. This analysis revealed that metal (II) complexes remain in distorted tetrahedral coordination environments. The electronic properties such as HOMO and LUMO energies are carried out by gaseous phase DFT/B3LYP calculations using Gaussian 09 program. Complex 1 showed a good binding propensity to the DNA and HSA, during the assessment of docking studies. Schiff base ligand HL and its metal (II) complexes, 1–3 screened for their in vitro antimicrobial activities using the disc diffusion method against selected microbes. Complex 1 shows higher antimicrobial activity than complexes 2, 3 and Schiff base ligand HL. According to the results obtained from the cytotoxic studies, Schiff base ligand HL and its metal (II) complexes 1–3 have better cytotoxicity against MCF‐7 cell lines with potency higher than the currently used chemotherapeutic agent cyclophosphamide.  相似文献   
83.
Fifteen organometallic Ir(III) half‐sandwich complexes ( 1A – 5C ) having the general formula [(η5‐Cpx)Ir(N^N)Cl]PF6 (Cpx = Cp*, tetramethyl(phenyl)cyclopentadienyl (Cpxph) or tetramethyl(biphenyl)cyclopentadienyl (Cpxbiph); N^N = diamine) have been synthesized and characterized. The molecular structure of 1A was determined using single‐crystal X‐ray diffraction analysis. The hydrolysis of 1A – 5C was monitored using UV–visible spectra. Complexes 3A – 3C showed catalytic activity for the oxidation of NADH to NAD+, where 3C showed the highest turnover number of 29.9 within 450 min. Cytotoxicity examination by MTT assay was carried out against two human cancer cell lines (HeLa and A549) after 24 or 48 h drug treatment. The complexes showed high potency, where the most potent complex ( 3C ; IC50 = 3.4 μM) was six times more active than cisplatin against A549 cells after 24 h drug exposure. Cytotoxic potency towards A549 cells increased with phenyl substitution on Cp ring: Cpxbiph > Cpxph > Cp*. In addition, the biological studies showed that 3C caused cell apoptosis and cell cycle arrest at G1 phase in A549 cancer cells. Moreover, 3C increased the level of reactive oxygen species markedly after 24 h, which may provide an important basis for killing cancer cells. Confocal laser scanning microscopy was used to track 3C in A549 cells. The cellular localization experiment showed that 3C targeted lysosomes and caused lysosomal damage.  相似文献   
84.
Graphene oxide (GO)‐catalyzed selective synthesis of amides via CSp3–H activation of methylarenes and consequent C–N bond formation with anilines under aqueous medium has been described. Oxygen functionality allied with GO surface played a dual role both as acid catalyst and oxidizing agent to some extent. However, GO has a copious effect on the reaction, shown by a high TOF value with TBHP as co‐oxidant. The decisive role of carboxylic acid functional groups on GO nanosheets in this metal‐free strategy has been confirmed and was monitored by various analytic techniques viz. Fourier transform‐infrared, UV–Vis, Raman and XPS. A plausible mechanism was proposed by control experiments and by the isolation of the intermediate. Over‐oxidation of methylarenes was not detected, and high recyclability of the carbocatalyst with its heterogeneous behavior facilitated the isolation and purification of the desired products. We have further explored the utility of this process for the chemoselective synthesis of benzimidazoles.  相似文献   
85.
Metal–organic frameworks (MOFs) have shown great potential in gas separation and storage, and the design of MOFs for these purposes is an on-going field of research. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a valuable technique for characterizing these functional materials. It can provide a wide range of structural and motional insights that are complementary to and/or difficult to access with alternative methods. In this Concept article, the recent advances made in SSNMR investigations of small gas molecules (i.e., carbon dioxide, carbon monoxide, hydrogen gas and light hydrocarbons) adsorbed in MOFs are discussed. These studies demonstrate the breadth of information that can be obtained by SSNMR spectroscopy, such as the number and location of guest adsorption sites, host–guest binding strengths and guest mobility. The knowledge acquired from these experiments yields a powerful tool for progress in MOF development.  相似文献   
86.
In organic photovoltaics, porphyrins (PPs) are among the most promising compounds owing to their large absorption cross-section, wide spectral range, and stability. Nevertheless, a precise adjustment of absorption band positions to reach a full coverage of the so-called green gap has not been achieved yet. We demonstrate that a tuning of the PP Q- and Soret bands can be carried out by using a computational approach for which substitution patterns are optimized in silico. The most promising candidate structures were then synthesized. The experimental UV/Vis data for the solvated compounds were in excellent agreement with the theoretical predictions. By attaching further functionalities, which allow the use of PP chromophores as linkers for the assembly of metal-organic frameworks (MOFs), we were able to exploit packing effects resulting in pronounced redshifts, which allowed further optimization of the photophysical properties of PP assemblies. Finally, we use a layer-by-layer method to assemble the PP linkers into surface-mounted MOFs (SURMOFs), thus obtaining high optical quality, homogeneous and crystalline multilayer films. Experimental results are in full accord with the calculations, demonstrating the huge potential of computational screening methods in tailoring MOF and SURMOF photophysical properties.  相似文献   
87.
Two new complexes, namely [Cu6L6] ( 1 ) and [Zn(HL)2] ( 2 ) (H2L = N‐(1‐phenyl‐3‐methyl‐4‐propenylidene‐5‐pyrazolone)‐2‐furancarboxylic acid hydrazide), have been synthesized and characterized. Single crystal X‐ray analysis indicates that complex 1 has a hexanuclear structure and complex 2 exhibits a mononuclear structure. The DNA/bovine serum albumin (BSA) binding properties of complexes 1 and 2 were investigated by absorption spectroscopy and fluorescence quenching. Both complexes could effectively intercalate to DNA with calculated quenching constants of 2.6 × 105 and 1.25 × 105 M?1, respectively. The quenching mechanism of the intrinsic fluorescence of BSA by the complexes was found to be a static one. The cytotoxicities of 1 and 2 were investigated in two human tumor cell lines, human esophageal cancer cells (Eca‐109) and cervical cancer cells (HeLa). Complex 1 exhibits higher antitumor activity than 2 . Furthermore, 1 can inhibit HeLa cells by inducing apoptosis and G0/G1 phase cell cycle arrest. All results demonstrate that 1 and 2 both have DNA/BSA binding capacity and antitumor activity.  相似文献   
88.
Metal oxide photocatalysts (MOPCs) decompose organic molecules under illumination. However, the application of MOPCs in industry and research is currently limited by their intrinsic hydrophilicity because MOPCs can be wetted by most liquids. To achieve liquid repellency, the surface needs to possess a low surface energy, but most organic molecules with low surface energy are degraded by photocatalytic activity. Herein, current methods to achieve liquid repellency on MOPCs, while preventing degradation of hydrophobic coatings, are reviewed. Classically, composite materials containing MOPCs and hydrophobic organic compounds possess good liquid repellency. However, composites normally form irregular coatings and are hard to prepare on surfaces such as those that are mesoporous or nanostructured. In addition, the adhesion of composites to substrates is often weak, resulting in delamination. Recent studies have shown that the direct grafting reaction of polydimethylsiloxane (PDMS) from silicone oil (methyl-terminated PDMS) under illumination results in a stable polymer brush. This easy and simple grafting method allows us to create stable liquid-repellent surfaces on MOPCs of various types, structures, and sizes. In particular, super-liquid-repellent drops with an underlying air layer can be created on PDMS-grafted nano-/microstructured MOPCs. Potential applications of surfaces combining liquid repellency and photocatalytic activity are also discussed; thus offering new ways of using MOPCs in a wider range of applications.  相似文献   
89.
A zinc containing metal–organic gel (Zn-MOG) with embedded free ions, which exhibits self-healing properties, has been synthesized for application in supercapacitors. The activated carbon-based flexible supercapacitor device with the MOG electrolyte has a broad potential window of 2.1 V, with high retention of specific capacitance compared to the traditional polyvinyl alcohol (PVA)-based gel. The Zn-MOG does not require an additional electrolyte. The sodium and sulphate ions embedded in the MOG are sufficient enough for the charge storage.  相似文献   
90.
徐小健 《化学教育》2020,41(13):60-63
借助数轴透析“一种金属与溶液中多种盐反应”和“多种金属与溶液中一种盐反应”中溶质与滤渣的组成,直观地将反应进程和结果展现其中,建立思维模型,化难为易,有利于学生掌握与应用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号